
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where
'Q' and '.' both indicate a queen and an empty space respectively.For example,
There exist two distinct solutions to the 4-queens puzzle:
[
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],
["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
Solution:
class Solution:
# @return a list of lists of string
def solveNQueens(self, n):
solution = []
oneSolution = []
for i in range(0, n):
row =[]
for j in range(0, n):
row.append('.')
oneSolution.append(row)
self.solveNQueensRec(0, n, oneSolution, solution)
return solution
def solveNQueensRec(self, row, n, oneSolution, solution):
if row==n:
tempSolution = []
for i in range(0,n):
tempSolution.append(''.join(oneSolution[i]))
solution.append(tempSolution)
for col in range(0,n):
if self.canAdd(oneSolution, row, col):
oneSolution[row][col]='Q'
self.solveNQueensRec(row+1, n, oneSolution, solution)
oneSolution[row][col]='.'
def canAdd(self, oneSolution, row, col):
for i in range(0,row):
if oneSolution[i][col]=='Q':
return False
if col-row+i>=0 and oneSolution[i][col-row+i]=='Q':
return False
if col+row-i<len(oneSolution) and oneSolution[i][col+row-i]=='Q':
return False
return True
No comments :
Post a Comment