Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 =
"great"
: great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node
"gr"
and swap its two children, it produces a scrambled string "rgeat"
. rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that
"rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes
"eat"
and "at"
, it produces a scrambled string "rgtae"
. rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that
"rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
Solution:
We use a top-down dynamic approach where we need a 3D array to keep the information, hence the memory complexity is $O(n^3)$.class Solution: # @return a boolean def isScramble(self, s1, s2): if len(s1)!=len(s2): return False isScramble=[] for i in range(0,len(s1)): isScramble.append([]) for j in range(0, len(s1)): isScramble[i].append([]) for k in range(0, len(s1)): isScramble[i][j].append(None) return self.isScrambleRec(s1, s2, 0, 0, len(s1)-1, isScramble) def isScrambleRec(self, s1, s2, i1, i2, length, isScramble): if isScramble[i1][i2][length] != None: return isScramble[i1][i2][length] if length==0: isScramble[i1][i2][length] = (s1[i1]==s2[i2]) else: valid = False for l in range(0, length): valid = valid
or (self.isScrambleRec(s1,s2,i1,i2,l, isScramble) and self.isScrambleRec(s1,s2,i1+l+1,i2+l+1,length-l-1, isScramble))
or (self.isScrambleRec(s1,s2,i1,i2+length-l,l, isScramble) and self.isScrambleRec(s1,s2,i1+l+1,i2,length-l-1, isScramble)) isScramble[i1][i2][length] = valid return isScramble[i1][i2][length]
No comments :
Post a Comment