Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
Solution:
public class Solution { public int numTrees(int n) { return numTrees(1, n); } public int numTrees(int min, int max) { if(min>=max) return 1; int val = 0; for (int i=min; i<=max; i++) { val += numTrees(min, i-1) *numTrees(i+1, max); } return val; } }
No comments :
Post a Comment