Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
Solution:
public class Solution {
public int numTrees(int n)
{
return numTrees(1, n);
}
public int numTrees(int min, int max)
{
if(min>=max)
return 1;
int val = 0;
for (int i=min; i<=max; i++)
{
val += numTrees(min, i-1) *numTrees(i+1, max);
}
return val;
}
}
No comments :
Post a Comment