Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string "rgeat"
.
rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
, it produces a scrambled string "rgtae"
.
rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
Solution:
We use a top-down dynamic approach where we need a 3D array to keep the information, hence the memory complexity is $O(n^3)$.
public class Solution {
public boolean isScramble(String s1, String s2) {
if(s1.length()!=s2.length())
return false;
Boolean[][][] isScramble= new Boolean [s1.length()][s1.length()][s1.length()];
return isScramble(s1,s2,0,0,s1.length()-1, isScramble);
}
private boolean isScramble(String s1, String s2, int index1, int index2, int len, Boolean[][][] isScramble)
{
if(isScramble[index1][index2][len] != null)
return isScramble[index1][index2][len];
if(len==0)
isScramble[index1][index2][len] = s1.charAt(index1)==s2.charAt(index2);
else
{
boolean value = false;
for (int i=0; i<len; i++)
{
value = value || (isScramble(s1,s2,index1, index2, i, isScramble) && isScramble(s1,s2, index1+i+1,index2+i+1,len-i-1, isScramble)) || (isScramble(s1,s2,index1,index2+len-i, i, isScramble) && isScramble(s1,s2,index1+i+1,index2,len-i-1, isScramble));
}
isScramble[index1][index2][len] = value;
}
return isScramble[index1][index2][len];
}
}