Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 =
"great"
: great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node
"gr"
and swap its two children, it produces a scrambled string "rgeat"
. rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that
"rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes
"eat"
and "at"
, it produces a scrambled string "rgtae"
. rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that
"rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
Solution:
We use a top-down dynamic approach where we need a 3D array to keep the information, hence the memory complexity is $O(n^3)$.public class Solution { public boolean isScramble(String s1, String s2) { if(s1.length()!=s2.length()) return false; Boolean[][][] isScramble= new Boolean [s1.length()][s1.length()][s1.length()]; return isScramble(s1,s2,0,0,s1.length()-1, isScramble); } private boolean isScramble(String s1, String s2, int index1, int index2, int len, Boolean[][][] isScramble) { if(isScramble[index1][index2][len] != null) return isScramble[index1][index2][len]; if(len==0) isScramble[index1][index2][len] = s1.charAt(index1)==s2.charAt(index2); else { boolean value = false; for (int i=0; i<len; i++) { value = value || (isScramble(s1,s2,index1, index2, i, isScramble) && isScramble(s1,s2, index1+i+1,index2+i+1,len-i-1, isScramble)) || (isScramble(s1,s2,index1,index2+len-i, i, isScramble) && isScramble(s1,s2,index1+i+1,index2,len-i-1, isScramble)); } isScramble[index1][index2][len] = value; } return isScramble[index1][index2][len]; } }
No comments :
Post a Comment