Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set
A solution set is:
2,3,6,7 and target 7, A solution set is:
[7] [2, 2, 3]Solution:
public class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target)
{
List<List<Integer>> solution = new ArrayList<List<Integer>>();
Arrays.sort(candidates);
combinationSum (candidates, target, 0, 0, new ArrayList<Integer>(), solution );
return solution;
}
public void combinationSum(int[] candidates, int target, int index, int sum, ArrayList<Integer> tillNow, List<List<Integer>> solution)
{
if(sum == target)
{
solution.add((List<Integer>)tillNow.clone());
return;
}
if(index==candidates.length)
{
return;
}
for(int i= index; i<candidates.length; i++)
{
if(sum+candidates[i]>target)
break;
tillNow.add(candidates[i]);
combinationSum(candidates, target, i, sum+candidates[i], tillNow, solution);
tillNow.remove(tillNow.size()-1);
}
}
}
No comments :
Post a Comment