Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set
A solution set is:
2,3,6,7
and target 7
, A solution set is:
[7]
[2, 2, 3]
Solution:
public class Solution { public List<List<Integer>> combinationSum(int[] candidates, int target) { List<List<Integer>> solution = new ArrayList<List<Integer>>(); Arrays.sort(candidates); combinationSum (candidates, target, 0, 0, new ArrayList<Integer>(), solution ); return solution; } public void combinationSum(int[] candidates, int target, int index, int sum, ArrayList<Integer> tillNow, List<List<Integer>> solution) { if(sum == target) { solution.add((List<Integer>)tillNow.clone()); return; } if(index==candidates.length) { return; } for(int i= index; i<candidates.length; i++) { if(sum+candidates[i]>target) break; tillNow.add(candidates[i]); combinationSum(candidates, target, i, sum+candidates[i], tillNow, solution); tillNow.remove(tillNow.size()-1); } } }
No comments :
Post a Comment